Phase portraits of a family of Kolmogorov systems with infinitely many singular points at infinity

We give the topological classification of the global phase portraits in the Poincaré disc of the Kolmogorov systems ẋ=xa0+c1x+c2z2+c3z,ż=zc0+c1x+c2z2+c3z,which depend on five parameters and have infinitely many singular points at the infinity. We prove that these systems have 22 topologically dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2022-01, Vol.104, p.106038, Article 106038
Hauptverfasser: Diz-Pita, Érika, Llibre, Jaume, Otero-Espinar, M. Victoria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give the topological classification of the global phase portraits in the Poincaré disc of the Kolmogorov systems ẋ=xa0+c1x+c2z2+c3z,ż=zc0+c1x+c2z2+c3z,which depend on five parameters and have infinitely many singular points at the infinity. We prove that these systems have 22 topologically distinct phase portraits.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2021.106038