Phase portraits of a family of Kolmogorov systems with infinitely many singular points at infinity
We give the topological classification of the global phase portraits in the Poincaré disc of the Kolmogorov systems ẋ=xa0+c1x+c2z2+c3z,ż=zc0+c1x+c2z2+c3z,which depend on five parameters and have infinitely many singular points at the infinity. We prove that these systems have 22 topologically dist...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2022-01, Vol.104, p.106038, Article 106038 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give the topological classification of the global phase portraits in the Poincaré disc of the Kolmogorov systems ẋ=xa0+c1x+c2z2+c3z,ż=zc0+c1x+c2z2+c3z,which depend on five parameters and have infinitely many singular points at the infinity. We prove that these systems have 22 topologically distinct phase portraits. |
---|---|
ISSN: | 1007-5704 1878-7274 |
DOI: | 10.1016/j.cnsns.2021.106038 |