Forward Chaining for Contextual Music Recommendation System
Music is an important aspect of people's daily lives. The reasons people listen to music include to fill their free time and to keep the mood in good condition. Music recommendations are a recommendation system that exists not only because of the many types of music available, but also because...
Gespeichert in:
Veröffentlicht in: | Computer engineering and applications journal 2021-10, Vol.10 (3), p.187-194 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Music is an important aspect of people's daily lives. The reasons people listen to music include to fill their free time and to keep the mood in good condition. Music recommendations are a recommendation system that exists not only because of the many types of music available, but also because people's perceptions of music are still not fully understood. But with so many music choices it makes it difficult for users to find music that fits their context. Examples include considering music based on the current user's location or current activities. A system is required that can recommend music in the context faced by the user.Music Recommendation System Development, Based on user context is a mobile application that uses the Android operating system. The recommendations provided by this system use expert system methods with forward chaining flow. The system will process inputs obtained from users and provide musical recommendations in accordance with the references provided by experts. The result of this study is a rule that is built to produce an average accuracy between user choice and system recommendations of 72%. |
---|---|
ISSN: | 2252-4274 2252-5459 |
DOI: | 10.18495/comengapp.v10i3.382 |