The U.S. syndicated loan market: Matching data

We introduce a new software package for determining linkages between datasets without common identifiers. We apply this to three datasets commonly used in academic research on syndicated lending: Refinitiv LPC DealScan, S&P Global Market Intelligence Compustat, and National Information Center St...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of financial research 2021-12, Vol.44 (4), p.695-723
Hauptverfasser: Cohen, Gregory J., Dice, Jacob, Friedrichs, Melanie, Gupta, Kamran, Hayes, William, Kitschelt, Isabel, Lee, Seung Jung, Marsh, W. Blake, Mislang, Nathan, Shaton, Maya, Sicilian, Martin, Webster, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new software package for determining linkages between datasets without common identifiers. We apply this to three datasets commonly used in academic research on syndicated lending: Refinitiv LPC DealScan, S&P Global Market Intelligence Compustat, and National Information Center Structure Data. We benchmark the results of our match using results from the literature and previously matched files that are publicly available. We find that company level matching is enhanced by careful cleaning of the data and considering hierarchical relationships. The R package for one of the company‐level matches can be found on GitHub and CRAN, which can be considered a general toolkit to match different firm‐level datasets with one another.
ISSN:0270-2592
1475-6803
DOI:10.1111/jfir.12261