Research on Personalized Minority Tourist Route Recommendation Algorithm Based on Deep Learning
With the improvement of living standards, more and more people are pursuing personalized routes. This paper uses personalized mining of interest points of ethnic minority tourism demand groups, extracts customer data features in social networks, and constructs data features of interesting topic fact...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2022-01, Vol.2022, p.1-9 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the improvement of living standards, more and more people are pursuing personalized routes. This paper uses personalized mining of interest points of ethnic minority tourism demand groups, extracts customer data features in social networks, and constructs data features of interesting topic factors, geographic location factors, and user access frequency factors, using LDA topic models and matrix decomposition models to perform feature vectorization processing on user sign-in records and build deep learning recommendation model (DLM). Using this model to compare with the traditional recommendation model and the recommendation model of a single data feature module, the experimental results show the following: (1) The fitting error of DLM recommendation results is significantly reduced, and its recommendation accuracy rate is 50% higher than that of traditional recommendation algorithms. The experimental results show that the DLM constructed in this paper has good learning and training performance, and the recommendation effect is good. (2) In this method, the performance of the DLM is significantly higher than other POI recommendation methods in terms of the accuracy or recall rate of the recommendation algorithm. Among them, the accuracy rates of the top five, top ten, and top twenty recommended POIs are increased by 9.9%, 7.4%, and 7%, respectively, and the recall rate is increased by 4.2%, 7.5%, and 14.4%, respectively. |
---|---|
ISSN: | 1058-9244 1875-919X |
DOI: | 10.1155/2022/8063652 |