Chatter suppression and stability analysis of rotary ultrasonic milling titanium alloy thin-walled workpiece
Titanium alloy and its thin-walled structures are widely used in the aerospace field. Aiming at the processing chatter and difficult-to-machine problem of titanium alloy thin-walled workpieces, rotary ultrasonic milling technology (RUM) is employed to restrict machining vibration in this paper. Firs...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2022-02, Vol.118 (7-8), p.2193-2204 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Titanium alloy and its thin-walled structures are widely used in the aerospace field. Aiming at the processing chatter and difficult-to-machine problem of titanium alloy thin-walled workpieces, rotary ultrasonic milling technology (RUM) is employed to restrict machining vibration in this paper. Firstly, for describing its dynamic characteristics, the titanium alloy web with low stiffness is equivalent to a mass-spring-damping system with three degrees of freedom. Then, a novel stability analysis method is proposed for RUM thin-walled workpiece (RUM-tww) through defining an ultrasonic function angle. Furthermore, RUM-tww stability lobe diagrams (SLDs) are achieved based on the semi-discrete method (SDM). The simulation results show that the milling stability of titanium alloy webs is improved effectively under the effect of ultrasonic vibration energy. Compared with conventional milling thin-walled workpiece (CM-tww), the stability region is increased by 80.32% within the spindle speed from 1000 to 5000r/min. Finally, the milling experiments are carried out to verify the validity and rationality of SLDs via analyzing chatter marks, cutter marks, and flatness on the machined surface. The experimental results are in good agreement with the theoretical prediction. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-021-07658-3 |