Numerical-experimental analysis of a modified G-BOP test to evaluate cracks in weld beads in thin sheets
One of the most critical problems related to welding is the occurrence of Hydrogen-Induced Cracking (HIC), and despite all the efforts made to mitigate this defect, it remains present in the modern welding industry. Although the Gapped Bead-on-Plate (G-BOP) test is one of the most practical methods...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2022-02, Vol.118 (7-8), p.2559-2569 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the most critical problems related to welding is the occurrence of Hydrogen-Induced Cracking (HIC), and despite all the efforts made to mitigate this defect, it remains present in the modern welding industry. Although the Gapped Bead-on-Plate (G-BOP) test is one of the most practical methods for assessing susceptibility to HIC, the use of a thick plate as the base metal (BM) restricts its application. Considering that many materials, such as the High-Strength-Low-Alloy (HSLA) steels, are difficult to find commercially in the required thickness, and also the fundamental need to appropriately represent the relationship between BM and electrode, da Silva, Fals and Trevisan developed a modified G-BOP test that uses a thinner sheet as the BM. Thus, the present paper aims to evaluate the ability of the Finite Element Method (FEM) to represent the thermomechanical aspects of the G-BOP test and to analyze its modified version using a numerical-experimental approach. In addition to consolidating the modified G-BOP test, the results corroborate the FEM as an important ally in HIC studies. |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-021-08121-z |