Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification

This paper deals with the kernel-based approximation of a multivariate periodic function by interpolation at the points of an integration lattice—a setting that, as pointed out by Zeng et al. (Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer, New York, 2006) and Zeng et al. (Constr. Approx....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2022, Vol.150 (1), p.33-77
Hauptverfasser: Kaarnioja, Vesa, Kazashi, Yoshihito, Kuo, Frances Y., Nobile, Fabio, Sloan, Ian H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the kernel-based approximation of a multivariate periodic function by interpolation at the points of an integration lattice—a setting that, as pointed out by Zeng et al. (Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer, New York, 2006) and Zeng et al. (Constr. Approx. 30: 529–555, 2009), allows fast evaluation by fast Fourier transform, so avoiding the need for a linear solver. The main contribution of the paper is the application to the approximation problem for uncertainty quantification of elliptic partial differential equations, with the diffusion coefficient given by a random field that is periodic in the stochastic variables, in the model proposed recently by Kaarnioja et al. (SIAM J Numer Anal 58(2): 1068–1091, 2020). The paper gives a full error analysis, and full details of the construction of lattices needed to ensure a good (but inevitably not optimal) rate of convergence and an error bound independent of dimension. Numerical experiments support the theory.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-021-01242-3