Fano schemes of complete intersections in toric varieties

We study Fano schemes F k ( X ) for complete intersections X in a projective toric variety Y ⊂ P n . Our strategy is to decompose F k ( X ) into closed subschemes based on the irreducible decomposition of F k ( Y ) as studied by Ilten and Zotine. We define the “expected dimension” for these subschem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-02, Vol.300 (2), p.1529-1556
Hauptverfasser: Ilten, Nathan, Kelly, Tyler L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study Fano schemes F k ( X ) for complete intersections X in a projective toric variety Y ⊂ P n . Our strategy is to decompose F k ( X ) into closed subschemes based on the irreducible decomposition of F k ( Y ) as studied by Ilten and Zotine. We define the “expected dimension” for these subschemes, which always gives a lower bound on the actual dimension. Under additional assumptions, we show that these subschemes are non-empty and smooth of the expected dimension. Using tools from intersection theory, we can apply these results to count the number of linear subspaces in X when the expected dimension of F k ( X ) is zero.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-021-02809-4