On unimodular tournaments
A tournament is unimodular if the determinant of its skew-adjacency matrix is 1. In this paper, we give some properties and constructions of unimodular tournaments. A unimodular tournament T with skew-adjacency matrix S is invertible if S−1 is the skew-adjacency matrix of a tournament. A spectral ch...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2022-01, Vol.632, p.50-60 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A tournament is unimodular if the determinant of its skew-adjacency matrix is 1. In this paper, we give some properties and constructions of unimodular tournaments. A unimodular tournament T with skew-adjacency matrix S is invertible if S−1 is the skew-adjacency matrix of a tournament. A spectral characterization of invertible tournaments is given. Lastly, we show that every n-tournament can be embedded in a unimodular tournament by adding at most n−⌊log2(n)⌋ vertices. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2021.09.014 |