The minimum number of clique-saturating edges
Let \(G\) be a \(K_p\)-free graph. We say \(e\) is a \(K_p\)-saturating edge of \(G\) if \(e\notin E(G)\) and \(G+e\) contains a copy of \(K_p\). Denote by \(f_p(n, e)\) the minimum number of \(K_p\)-saturating edges that an \(n\)-vertex \(K_p\)-free graph with \(e\) edges can have. Erdős and Tuza c...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(G\) be a \(K_p\)-free graph. We say \(e\) is a \(K_p\)-saturating edge of \(G\) if \(e\notin E(G)\) and \(G+e\) contains a copy of \(K_p\). Denote by \(f_p(n, e)\) the minimum number of \(K_p\)-saturating edges that an \(n\)-vertex \(K_p\)-free graph with \(e\) edges can have. Erdős and Tuza conjectured that \(f_4(n,\lfloor n^2/4\rfloor+1)=\left(1 + o(1)\right)\frac{n^2}{16}.\) Balogh and Liu disproved this by showing \(f_4(n,\lfloor n^2/4\rfloor+1)=(1+o(1))\frac{2n^2}{33}\). They believed that a natural generalization of their construction for \(K_p\)-free graph should also be optimal and made a conjecture that \(f_{p+1}(n,ex(n,K_p)+1)=\left(\frac{2(p-2)^2}{p(4p^2-11p+8)}+o(1)\right)n^2\) for all integers \(p\ge 3\). The main result of this paper is to confirm the above conjecture of Balogh and Liu. |
---|---|
ISSN: | 2331-8422 |