A neural network training algorithm for singular perturbation boundary value problems
A training algorithm for the Neural Network solution of Singular Perturbation Boundary Value Problems is presented. The solution is based on a single hidden layer feed forward Neural Network with a small number of neurons. The training algorithm adapts the training points grid so to be more tense in...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2022, Vol.34 (1), p.607-615 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A training algorithm for the Neural Network solution of Singular Perturbation Boundary Value Problems is presented. The solution is based on a single hidden layer feed forward Neural Network with a small number of neurons. The training algorithm adapts the training points grid so to be more tense in areas of the integration interval that solution has a layer or a peek. The algorithm automatically detects the areas of interest in the integration interval. The resulted Neural Network solutions are very accurate in a uniform way. The numerical tests in various test problems justify our arguments as the produced solutions prove to give smaller errors compare to their competitors. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-021-06364-1 |