Strategy for Locating People to Reduce the Transmission of COVID-19 Using Different Interference Measures

COVID-19 is generally transmitted from person to person through small droplets of saliva emitted when talking, sneezing, coughing, or breathing. For this reason, social distancing and ventilation have been widely emphasized to control the pandemic. The spread of the virus has brought with it many ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-01, Vol.14 (1), p.529
Hauptverfasser: Valenzuela-Fonseca, Brenda, Linfati, Rodrigo, Escobar, John Willmer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:COVID-19 is generally transmitted from person to person through small droplets of saliva emitted when talking, sneezing, coughing, or breathing. For this reason, social distancing and ventilation have been widely emphasized to control the pandemic. The spread of the virus has brought with it many challenges in locating people under distance constraints. The effects of wakes between turbines have been studied extensively in the literature on wind energy, and there are well-established interference models. Does this apply to the propagation functions of the virus? In this work, a parallel relationship between the two problems is proposed. A mixed-integer linear programming (MIP) model and a mixed-integer quadratic programming model (MIQP) are formulated to locate people to avoid the spread of COVID-19. Both models were constructed according to the distance constraints proposed by the World Health Organization and the interference functions representing the effects of wake between turbines. Extensive computational tests show that people should not be less than two meters apart, in agreement with the adapted Wells–Riley model, which indicates that 1.6 to 3.0 m (5.2 to 9.8 ft) is the safe social distance when considering the aerosol transmission of large droplets exhaled when speaking, while the distance can be up to 8.2 m (26 ft) if all the droplets in a calm air environment are taken into account.
ISSN:2071-1050
2071-1050
DOI:10.3390/su14010529