Damage analysis of Ti6Al4V lattice structures manufactured by electron beam melting process subjected to bending load
High levels of stiffness, strength, and lightweight can be achieved through lattice structures. Many different technologies can be adopted for their construction; among them, additive manufacturing presents high flexibility and the capacity to produce complex shape parts. In this paper, a detailed a...
Gespeichert in:
Veröffentlicht in: | Material design & processing communications 2021-12, Vol.3 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High levels of stiffness, strength, and lightweight can be achieved through lattice structures. Many different technologies can be adopted for their construction; among them, additive manufacturing presents high flexibility and the capacity to produce complex shape parts. In this paper, a detailed analysis of the fracture surface was carried out on titanium sandwich panels, having a lattice core and produced through electron beam melting (EBM) process. The specimens were subjected to the three‐point bending test; then, the fracture surfaces were observed by means of a scanning electron microscope (SEM). The occurrence of dimples was found on the fracture surface, demonstrating the ductile behavior of the material; moreover, the micrographies showed a different morphology between the core of the struts and the surface. |
---|---|
ISSN: | 2577-6576 2577-6576 |
DOI: | 10.1002/mdp2.223 |