PALM THEORY, RANDOM MEASURES AND STEIN COUPLINGS

We establish a general Berry–Esseen type bound which gives optimal bounds in many situations under suitable moment assumptions. By combining the general bound with Palm theory, we deduce a new error bound for assessing the accuracy of normal approximation to statistics arising from random measures,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2021-12, Vol.31 (6), p.2881-2923
Hauptverfasser: Chen, Louis H. Y., Röllin, Adrian, Xia, Aihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a general Berry–Esseen type bound which gives optimal bounds in many situations under suitable moment assumptions. By combining the general bound with Palm theory, we deduce a new error bound for assessing the accuracy of normal approximation to statistics arising from random measures, including stochastic geometry. We illustrate the use of the bound in four examples: completely random measures, excursion random measure of a locally dependent random process, and the total edge length of Ginibre–Voronoi tessellations and of Poisson–Voronoi tessellations. Moreover, we apply the general bound to Stein couplings and discuss the special cases of local dependence and additive functionals in occupancy problems.
ISSN:1050-5164
2168-8737
DOI:10.1214/21-AAP1666