RANDOMIZED HAMILTONIAN MONTE CARLO AS SCALING LIMIT OF THE BOUNCY PARTICLE SAMPLER AND DIMENSION-FREE CONVERGENCE RATES
The bouncy particle sampler is a Markov chain Monte Carlo method based on a nonreversible piecewise deterministic Markov process. In this scheme, a particle explores the state space of interest by evolving according to a linear dynamics which is altered by bouncing on the hyperplane perpendicular to...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2021-12, Vol.31 (6), p.2612-2662 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The bouncy particle sampler is a Markov chain Monte Carlo method based on a nonreversible piecewise deterministic Markov process. In this scheme, a particle explores the state space of interest by evolving according to a linear dynamics which is altered by bouncing on the hyperplane perpendicular to the gradient of the negative log-target density at the arrival times of an inhomogeneous poisson process (PP) and by randomly perturbing its velocity at the arrival times of a homogeneous PP. Under regularity conditions, we show here that the process corresponding to the first component of the particle and its corresponding velocity converges weakly towards a randomized Hamiltonian Monte Carlo (RHMC) process as the dimension of the ambient space goes to infinity. RHMC is another piecewise deterministic nonreversible Markov process where a Hamiltonian dynamics is altered at the arrival times of a homogeneous PP by randomly perturbing the momentum component. We then establish dimension-free convergence rates for RHMC for strongly log-concave targets with bounded Hessians using coupling ideas and hypocoercivity techniques. We use our understanding of the mixing properties of the limiting RHMC process to choose the refreshment rate parameter of BPS. This results in significantly better performance in our simulation study than previously suggested guidelines. |
---|---|
ISSN: | 1050-5164 2168-8737 |
DOI: | 10.1214/20-AAP1659 |