Characterization of absorbency properties on tissue paper materials with and without “deco” and “micro” embossing patterns

Water absorption is a key property in several tissue paper materials and can be a differentiating factor in terms of consumer choice. The converting modifications applied in the tissue industry can improved absorbency properties. For this purpose, the main goal of the present work is to study the in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2022, Vol.29 (1), p.541-555
Hauptverfasser: Morais, Flávia P., Vieira, Joana C., Mendes, António O., Carta, Ana M., Costa, Ana P., Fiadeiro, Paulo T., Curto, Joana M. R., Amaral, Maria E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water absorption is a key property in several tissue paper materials and can be a differentiating factor in terms of consumer choice. The converting modifications applied in the tissue industry can improved absorbency properties. For this purpose, the main goal of the present work is to study the influence of “deco” and “micro” embossing on water absorption capacity, Klemm capillary rise, and liquid spreading kinetics in tissue papers. An industrial never-dried bleached eucalyptus kraft pulp, a creped industrial base tissue paper, and a disintegrated fibrous suspension obtained from the same industrial paper were used to produce structures with and without “deco” and “micro” embossing patterns. The results indicate that the “micro” embossing process promoted bulky and porous structures, enhancing water absorption capacity and Klemm capillary rise properties, while the “dec” embossing pattern decreased water absorption capacity properties. The creping process also increased the water absorption capacity but decreased Klemm capillary rise properties along with the fiber mixtures. Regarding the liquid spreading kinetics, both embossing patterns decreased this property in uncreped isotropic structures, contrary to creped anisotropic structures. The eucalyptus and softwood fibers mixture improved the spreading kinetics compared to the creping process. The performance of structures with and without embossing allowed to quantify the liquid retention properties, combining ISO experimental methods and an optical system that records the liquid interaction with fibrous structures. In conclusion, this laboratory embossing method can be used as an alternative method to optimize converting operations and the final tissue paper characterization, on a laboratory scale.
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-021-04328-1