Improved Suzuki–Miyaura reaction conversion efficiency using magnetic nanoparticles and inductive heating
The use of magnetic nanoparticles in C–C coupling reactions enables the facile recovery of the catalyst under environmentally friendly conditions. Herein, the synthesis of Pd/Fe@Fe 3 O 4 nanoparticles by the reduction of Pd 2+ and oxidation of Fe on the surface of preformed Fe@Fe 3 O 4 is reported....
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2022, Vol.57 (1), p.241-253 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of magnetic nanoparticles in C–C coupling reactions enables the facile recovery of the catalyst under environmentally friendly conditions. Herein, the synthesis of Pd/Fe@Fe
3
O
4
nanoparticles by the reduction of Pd
2+
and oxidation of Fe on the surface of preformed Fe@Fe
3
O
4
is reported. The nanoparticles were characterized using a variety of analytical techniques (transmission electron microscopy, Mössbauer spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction) to determine their size, structure, and chemical composition. The catalytic efficiency of these nanoparticles in classical Suzuki–Miyaura coupling reactions was investigated. The nanoparticles achieved high catalytic activity with the application of local heating by an alternating magnetic field. An investigation was conducted at identical temperatures to compare global heating with the application of an external magnetic field; magnetic heating demonstrated excellent substrate conversion in lesser time and at a lower temperature. The catalyst could also be recycled and reused three times, with ~ 30% decrease in the substrate conversion, which is most likely due to the agglomeration of the Pd nanoparticles or poisoning of the Pd catalyst. This approach, which takes advantage of the catalytic activity and magnetic susceptibility of magnetic nanoparticles, can be applied to several organic transformations to improve their efficiency.
Graphical abstract |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-021-06591-w |