Giant barocaloric effects in natural graphite/polydimethylsiloxane rubber composites
Solid-state cooling based on caloric effects is considered a viable alternative to replace the conventional vapor-compression refrigeration systems. Regarding barocaloric materials, recent results show that elastomers are promising candidates for cooling applications around room temperature. However...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2022, Vol.57 (1), p.311-323 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solid-state cooling based on caloric effects is considered a viable alternative to replace the conventional vapor-compression refrigeration systems. Regarding barocaloric materials, recent results show that elastomers are promising candidates for cooling applications around room temperature. However, elastomers are insulating materials, which is a disadvantage that may compromise practical applications, since high heat transfer properties are typically desirable for more efficiency. Herein, barocaloric effects are investigated in natural graphite/polydimethylsiloxane rubber composites (NG/PDMS), in different concentrations of natural graphite. Adding natural graphite to PDMS, the adiabatic temperature change and the isothermal entropy change of the NG/PDMS composites reduce when compared to PDMS, but the composites still remain in giant barocaloric class and achieve an increase up to ~ 500% in thermal diffusivity and thermal conductivity. The results are promising for solid-state cooling based on barocaloric effect because the NG/PDMS composites combine different desired properties and are identified as better or similar among different barocaloric materials reported in the literature.
Graphical abstract |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-021-06649-9 |