Study the Effects of Carbon Nanotubes and Graphene Oxide Combinations on the Mechanical Properties and Flame Retardance of Epoxy Nanocomposites
Carbon-based fillers have attracted a lot of interest in polymer composites because of their ability to alter beneficial properties at low filler concentrations, good surface bonding with polymers, availability in different forms, etc. Carbon-based materials (such as fullerene, CNTs, graphene, and g...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2021-12, Vol.2021, p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbon-based fillers have attracted a lot of interest in polymer composites because of their ability to alter beneficial properties at low filler concentrations, good surface bonding with polymers, availability in different forms, etc. Carbon-based materials (such as fullerene, CNTs, graphene, and graphite) have been studied as fillers with enhanced fire resistance to epoxy resins. In order to reduce the flammability and improve the thermal stability of epoxy resin-based nanocomposite materials, which can be achieved by a simultaneous combination of graphene oxide and multiwall carbon nanotubes, the graphite oxide (GO) epoxy nanomaterial was developed by 1% wt.% GO combined with 0.02 wand 0.04 wt.% MWCNT. The homogeneous dispersion of GO and MWCNTs in epoxy resins is supported by ultrasonic vibrations. The results showed that when nanocomposite materials were present at the same time MWCNTs and GO, their mechanical properties and fire resistance were significantly improved. Nanomaterials are characterized by FT-IR spectroscopy and SEM imaging, mechanical strength, and flame retardant properties (LOI, UL94). |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2021/1437929 |