ACAMA: Deep Learning-Based Detection and Classification of Android Malware Using API-Based Features

As a great number of IoT and mobile devices are used in our daily lives, the security of mobile devices is being important than ever. If mobile devices which play a key role in connecting devices are exploited by malware to perform malicious behaviors, this can cause serious damage to other devices...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2021-12, Vol.2021, p.1-12
Hauptverfasser: Ko, Eunbyeol, Kim, Jinsung, Ban, Younghoon, Cho, Haehyun, Yi, Jeong Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a great number of IoT and mobile devices are used in our daily lives, the security of mobile devices is being important than ever. If mobile devices which play a key role in connecting devices are exploited by malware to perform malicious behaviors, this can cause serious damage to other devices as well. Hence, a huge research effort has been put forward to prevent such situation. Among them, many studies attempted to detect malware based on APIs used in malware. In general, they showed the high accuracy in detecting malware, but they could not classify malware into detailed categories because their detection mechanisms do not consider the characteristics of each malware category. In this paper, we propose a malware detection and classification approach, named ACAMA, that can detect malware and categorize them with high accuracy. To show the effectiveness of ACAMA, we implement and evaluate it with previously proposed approaches. Our evaluation results demonstrate that ACAMA detects malware with 26% higher accuracy than a previous work. In addition, we show that ACAMA can successfully classify applications that another previous work, AVClass, cannot classify.
ISSN:1939-0114
1939-0122
DOI:10.1155/2021/6330828