An evolving approach for fault diagnosis of dynamic systems

This work proposes a methodology for fault identification of dynamic systems using an online evolving approach. The proposed methodology is divided into three stages: pre-processing, processing, and post-processing. The central part of our approach concerns the processing itself, in which we use an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2022-03, Vol.189, p.115983, Article 115983
Hauptverfasser: Santos, Mailson Ribeiro, Costa, Bruno Sielly Jales, Bezerra, Clauber Gomes, Andonovski, Goran, Guedes, Luiz Affonso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work proposes a methodology for fault identification of dynamic systems using an online evolving approach. The proposed methodology is divided into three stages: pre-processing, processing, and post-processing. The central part of our approach concerns the processing itself, in which we use an online learning evolving algorithm, named AutoCloud, for clustering the different types of faults. The proposal has been validated using data from a real-level control process on a pilot scale. The obtained results indicate that our proposal is adequate for fault identification of dynamic systems. •An evolving-based method for Fault detection and Diagnosis in dynamic systems.•Use case in a real pilot plant.•Unsupervised learning approach for FDD.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2021.115983