Volume Growth Estimates for Ricci Solitons and Quasi-Einstein Manifolds

In this article, we provide some volume growth estimates for complete noncompact gradient Ricci solitons and quasi-Einstein manifolds similar to the classical results by Bishop, Calabi and Yau for complete Riemannian manifolds with nonnegative Ricci curvature. We prove a sharp volume growth estimate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2022-02, Vol.32 (2), Article 62
Hauptverfasser: Cheng, Xu, Ribeiro, Ernani, Zhou, Detang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we provide some volume growth estimates for complete noncompact gradient Ricci solitons and quasi-Einstein manifolds similar to the classical results by Bishop, Calabi and Yau for complete Riemannian manifolds with nonnegative Ricci curvature. We prove a sharp volume growth estimate for complete noncompact gradient shrinking Ricci soliton. Moreover, we provide upper bound volume growth estimates for complete noncompact quasi-Einstein manifolds with λ = 0 . In addition, we prove that geodesic balls of complete noncompact quasi-Einstein manifolds with λ < 0 and μ ≤ 0 have at most exponential volume growth.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-021-00825-8