Volume Growth Estimates for Ricci Solitons and Quasi-Einstein Manifolds
In this article, we provide some volume growth estimates for complete noncompact gradient Ricci solitons and quasi-Einstein manifolds similar to the classical results by Bishop, Calabi and Yau for complete Riemannian manifolds with nonnegative Ricci curvature. We prove a sharp volume growth estimate...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2022-02, Vol.32 (2), Article 62 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we provide some volume growth estimates for complete noncompact gradient Ricci solitons and quasi-Einstein manifolds similar to the classical results by Bishop, Calabi and Yau for complete Riemannian manifolds with nonnegative Ricci curvature. We prove a sharp volume growth estimate for complete noncompact gradient shrinking Ricci soliton. Moreover, we provide upper bound volume growth estimates for complete noncompact quasi-Einstein manifolds with
λ
=
0
.
In addition, we prove that geodesic balls of complete noncompact quasi-Einstein manifolds with
λ
<
0
and
μ
≤
0
have at most exponential volume growth. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-021-00825-8 |