The effect of biologically mediated decay rates on modelling soil carbon sequestration in agricultural settings

Microbial biomass carbon (MBC), a crucial soil labile carbon fraction, is the most active component of the soil organic carbon (SOC) that regulates bio-geochemical processes in terrestrial ecosystems. Some studies in the literature ignore the effect of microbial population growth on carbon decomposi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-01
Hauptverfasser: Davoudabadi, Mohammad Javad, Pagendam, Daniel, Drovandi, Christopher, Baldock, Jeff, White, Gentry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microbial biomass carbon (MBC), a crucial soil labile carbon fraction, is the most active component of the soil organic carbon (SOC) that regulates bio-geochemical processes in terrestrial ecosystems. Some studies in the literature ignore the effect of microbial population growth on carbon decomposition rates. In reality, we might expect that the decomposition rate should be related to the population of microbes in the soil and have a positive relationship with the size of the microbial biomass pool. In this study, we explore the effect of microbial population growth on the accuracy of modelling soil carbon sequestration by developing and comparing two soil carbon models that consider a carrying capacity and limit to the growth of the microbial pool. We apply our models to three datasets, two small and one large datasets, and we select the best model in terms of having the best predictive performance through two model selection methods. Through this analysis we reveal that commonly used complex soil carbon models can over-fit in the presence of both small and large time-series datasets, and our simpler model can produce more accurate predictions. We conclude that considering the microbial population growth in a soil carbon model improves the accuracy of a model in the presence of a large dataset.
ISSN:2331-8422