Discrete adjoint methodology for general multiphysics problems
This article presents a methodology whereby adjoint solutions for partitioned multiphysics problems can be computed efficiently, in a way that is completely independent of the underlying physical sub-problems, the associated numerical solution methods, and the number and type of couplings between th...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2022-01, Vol.65 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a methodology whereby adjoint solutions for partitioned multiphysics problems can be computed efficiently, in a way that is completely independent of the underlying physical sub-problems, the associated numerical solution methods, and the number and type of couplings between them. By applying the reverse mode of algorithmic differentiation to each discipline, and by using a specialized recording strategy, diagonal and cross terms can be evaluated individually, thereby allowing different solution methods for the generic coupled problem (for example block-Jacobi or block-Gauss-Seidel). Based on an implementation in the open-source multiphysics simulation and design software SU2, we demonstrate how the same algorithm can be applied for shape sensitivity analysis on a heat exchanger (conjugate heat transfer), a deforming wing (fluid–structure interaction), and a cooled turbine blade where both effects are simultaneously taken into account. |
---|---|
ISSN: | 1615-147X 1615-1488 |
DOI: | 10.1007/s00158-021-03117-5 |