Nonlinear Spline Adaptive Filtering Against Non-Gaussian Noise

In this paper, a generalized maximum Versoria criterion algorithm (GMVC) based on wiener spline adaptive filter, called SAF–GMVC, is proposed. The proposed algorithm is used for nonlinear system identification under non-Gaussian environment. To improve the convergence performance of the SAF–GMVC, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2022, Vol.41 (1), p.579-596
Hauptverfasser: Guo, Wenyan, Zhi, Yongfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a generalized maximum Versoria criterion algorithm (GMVC) based on wiener spline adaptive filter, called SAF–GMVC, is proposed. The proposed algorithm is used for nonlinear system identification under non-Gaussian environment. To improve the convergence performance of the SAF–GMVC, the momentum stochastic gradient descent (MSGD) is introduced. In order to further reduce the steady-state error, the variable step-size algorithm is introduced, called as SAF–GMVC–VMSGD. Simulation results demonstrate that SAF–GMVC–VMSGD achieves better filtering effective against non-Gaussian noise.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-021-01798-3