Spatiotemporal assessment of precipitation variability, seasonality, and extreme characteristics over a Himalayan catchment
This paper presents a detailed spatiotemporal analysis of the rainfall variability, seasonality, and the extreme characteristics of Tehri catchment located in the lower Himalayan region in India. To this end, the daily rainfall data is extracted from 22 grids for 117 years (1901–2017) from the high-...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied climatology 2022, Vol.147 (1-2), p.817-833 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a detailed spatiotemporal analysis of the rainfall variability, seasonality, and the extreme characteristics of Tehri catchment located in the lower Himalayan region in India. To this end, the daily rainfall data is extracted from 22 grids for 117 years (1901–2017) from the high-resolution (0.25° × 0.25°) gridded observation dataset. Monthly rainfall distribution is evaluated using precipitation concentration index (
PCI
) and seasonality index. The extreme rainfall indices, viz., maximum 1-day rainfall (Rx1Day), maximum 5-day rainfall (Rx5Day), number of rainy days (NxRainy), total precipitation in rainy days (PRCPTOT), number of heavy rainfall events (NxHeavy), maximum consecutive wet days (CWD), and simple daily intensity index (SDII) are computed for each year considering the thresholds suggested by India Meteorological Department (IMD). The Mann–Whitney-Pettitt test when applied to the annual rainfall time series revealed the year 1958 to be the statistically significant change point. The non-parametric modified Mann–Kendall and Sen’s slope tests are employed to detect the trend in monthly, seasonal, annual rainfall time series, extreme precipitation indices, and seasonality indices for both the pre- and post-1958 periods. The annual rainfall over the grids mostly possessed higher negative trends during 1959–2017 than those during 1901–1958, mainly due to the decreasing trends in post-monsoon and winter seasons. Compared to 1901–1958, NxRainy, CWD, and PRCPTOT exhibited a remarkable decreasing trend whereas NxHeavy, Rx1Day, Rx5Day, and SDII exhibited higher positive trends during 1959–2017, indicating intensification of precipitation. The precipitation over the catchment has been more concentrated in the latter epochs of monsoon season and annual rainfall and it is also evident from the increasing trends of the seasonality indices. There is no such study dealing comprehensively with identification of extreme characteristics, seasonality/concentration characteristics, and various categorical trends of precipitation in a Himalayan region reported in literature. This study will be useful in understanding the decreasing trend of precipitation volume coupled with increasing intensity and concentration and it is quite critical for a Himalayan catchment. |
---|---|
ISSN: | 0177-798X 1434-4483 |
DOI: | 10.1007/s00704-021-03861-0 |