Pluripotential Chern-Ricci Flows
Extending a recent theory developed on compact K\"ahler manifolds by Guedj-Lu-Zeriahi and the author, we define and study pluripotential solutions to degenerate parabolic complex Monge-Ampère equations on compact Hermitian manifolds. Under natural assumptions on the Cauchy boundary data, we sho...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-01 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extending a recent theory developed on compact K\"ahler manifolds by Guedj-Lu-Zeriahi and the author, we define and study pluripotential solutions to degenerate parabolic complex Monge-Ampère equations on compact Hermitian manifolds. Under natural assumptions on the Cauchy boundary data, we show that the pluripotential solution is semi-concave in time and continuous in space and that such a solution is unique. We also establish a partial regularity of such solutions under some extra assumptions of the densities and apply it to prove the existence and uniqueness of the weak Chern-Ricci flow on complex compact varieties with log terminal singularities. |
---|---|
ISSN: | 2331-8422 |