Pluripotential Chern-Ricci Flows

Extending a recent theory developed on compact K\"ahler manifolds by Guedj-Lu-Zeriahi and the author, we define and study pluripotential solutions to degenerate parabolic complex Monge-Ampère equations on compact Hermitian manifolds. Under natural assumptions on the Cauchy boundary data, we sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-01
1. Verfasser: Quang-Tuan Dang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extending a recent theory developed on compact K\"ahler manifolds by Guedj-Lu-Zeriahi and the author, we define and study pluripotential solutions to degenerate parabolic complex Monge-Ampère equations on compact Hermitian manifolds. Under natural assumptions on the Cauchy boundary data, we show that the pluripotential solution is semi-concave in time and continuous in space and that such a solution is unique. We also establish a partial regularity of such solutions under some extra assumptions of the densities and apply it to prove the existence and uniqueness of the weak Chern-Ricci flow on complex compact varieties with log terminal singularities.
ISSN:2331-8422