A similarity transformed second-order approximate coupled cluster method for the excited states: Theory, implementation, and benchmark

We present a novel and cost-effective approach of using a second similarity transformation of the Hamiltonian to include the missing higher-order terms in the second-order approximate coupled cluster singles and doubles (CC2) model. The performance of the newly developed ST-EOM-CC2 model has been in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-01, Vol.156 (1), p.014110-014110
Hauptverfasser: Haldar, Soumi, Mukhopadhyay, Tamoghna, Dutta, Achintya Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel and cost-effective approach of using a second similarity transformation of the Hamiltonian to include the missing higher-order terms in the second-order approximate coupled cluster singles and doubles (CC2) model. The performance of the newly developed ST-EOM-CC2 model has been investigated for the calculation of excitation energies of valence, Rydberg, and charge-transfer excited states. The method shows significant improvement in the excitation energies of Rydberg and charge-transfer excited states as compared to the conventional CC2 method while retaining the good performance of the latter for the valence excited state. This method retains the charge-transfer separability of the charge-transfer excited states, which is a significant advantage over the traditional CC2 method. A second order many-body perturbation theory variant of the new method is also proposed.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0064889