Deep Unsupervised 4-D Seismic 3-D Time-Shift Estimation With Convolutional Neural Networks
We present a novel 3-D warping technique for the estimation of 4-D seismic time-shift. This unsupervised method provides a diffeomorphic 3-D time shift field that includes uncertainties, therefore, it does not need prior time-shift data to be trained. This results in a widely applicable method in ti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a novel 3-D warping technique for the estimation of 4-D seismic time-shift. This unsupervised method provides a diffeomorphic 3-D time shift field that includes uncertainties, therefore, it does not need prior time-shift data to be trained. This results in a widely applicable method in time-lapse seismic data analysis that is not implicitly biased by supervised time-shifts from other methods. We explore the generalization of the method to unseen data both in the same geological setting and in a different field, where the generalization error stays constant and within an acceptable range across test cases. We further explore upsampling of the warp field from a smaller network to decrease computational cost and see some deterioration of the warp field quality as a result. This method provides an accurate 3-D seismic registration method, where the heavy computation can be preexecuted and the inference of the network taking seconds on consumer hardware. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2021.3081516 |