Deep Unsupervised 4-D Seismic 3-D Time-Shift Estimation With Convolutional Neural Networks

We present a novel 3-D warping technique for the estimation of 4-D seismic time-shift. This unsupervised method provides a diffeomorphic 3-D time shift field that includes uncertainties, therefore, it does not need prior time-shift data to be trained. This results in a widely applicable method in ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-16
Hauptverfasser: Dramsch, Jesper Soren, Christensen, Anders Nymark, MacBeth, Colin, Luthje, Mikael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel 3-D warping technique for the estimation of 4-D seismic time-shift. This unsupervised method provides a diffeomorphic 3-D time shift field that includes uncertainties, therefore, it does not need prior time-shift data to be trained. This results in a widely applicable method in time-lapse seismic data analysis that is not implicitly biased by supervised time-shifts from other methods. We explore the generalization of the method to unseen data both in the same geological setting and in a different field, where the generalization error stays constant and within an acceptable range across test cases. We further explore upsampling of the warp field from a smaller network to decrease computational cost and see some deterioration of the warp field quality as a result. This method provides an accurate 3-D seismic registration method, where the heavy computation can be preexecuted and the inference of the network taking seconds on consumer hardware.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2021.3081516