Dietary Seleno‑l‑methionine Alters the Microbial Communities and Causes Damage in the Gastrointestinal Tract of Japanese Medaka Oryzias latipes

Excess dietary seleno-l-methionine (Se-Met) induces various adverse effects in fish inhabiting the Se-contaminated environments. However, there is an extreme paucity of data on the effects of excess dietary Se-Met on the microbiota in the gastrointestinal (GI) tract in fish. In this study, Japanese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-12, Vol.55 (24), p.16515-16525
Hauptverfasser: Liu, Hongsong, Li, Xiao, Lei, Haojun, Li, Dan, Chen, Hongxing, Schlenk, Daniel, Yan, Bo, Yongju, Luo, Xie, Lingtian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excess dietary seleno-l-methionine (Se-Met) induces various adverse effects in fish inhabiting the Se-contaminated environments. However, there is an extreme paucity of data on the effects of excess dietary Se-Met on the microbiota in the gastrointestinal (GI) tract in fish. In this study, Japanese medaka Oryzias latipes (three months old) were fed the Se-Met enriched diets at environmentally relevant concentrations: 2.90 (Control: (C), 6.69 (L), 11.89 (M), and 27.05 (H) μg Se/g dw) for 60 d. Histopathological, high throughput sequencing, and biochemical approaches were used to investigate the alterations in histology and microbial communities of the GI tract, enzymatic activity, and transcripts of closely related genes. The results showed that the fish weight was reduced at ∼13% from the L and H treatments. Decreased height and thickness of villus in the GI tract were observed in the H treatment. Meanwhile, the level of D-lactate and activity of diamine oxidase (DAO), protease, and lipase were inhibited in the H treatment. The transcripts of the genes related to the inflammation (i.e., IL-1β and IL-8) were elevated, while those of the genes related to the intestinal barrier (i.e., cdh1, ZO-1, ocln, and cldn7) were inhibited in the H treatment. In addition, alpha diversity at the genus level was higher in the L treatment than the control, and the composition of the microbial community was altered by dietary Se-Met. Furthermore, 5 genera (Rhodobacter, Cloacibacterium, Bdellovibrio, Shinella, and Aeromonas) exhibited the largest variation in abundance among treatments. This study has demonstrated that excess dietary Se-Met inhibits growth, causes hispathological damage to the GI tract, and alters the composition of the microbial community in Oryzias latipes.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c04533