Traveling wave phenomena of a nonlocal reaction-diffusion equation with degenerate nonlinearity

•Establish the existence of traveling wave solutions for degenerate reaction-diffusion equations with the nonlocal effect.•Demonstrate the existence of monotone traveling wave solutions by using the monotone iteration and operator theory, and investigate how wave profile (e.g. being non-monotone or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2021-12, Vol.103, p.105990, Article 105990
Hauptverfasser: Han, Bang-Sheng, Feng, Zhaosheng, Bo, Wei-Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105990
container_title Communications in nonlinear science & numerical simulation
container_volume 103
creator Han, Bang-Sheng
Feng, Zhaosheng
Bo, Wei-Jian
description •Establish the existence of traveling wave solutions for degenerate reaction-diffusion equations with the nonlocal effect.•Demonstrate the existence of monotone traveling wave solutions by using the monotone iteration and operator theory, and investigate how wave profile (e.g. being non-monotone or periodic) is affected by the enhancement of nonlocality, parameter values and variation of initial values for two different forms of convolution kernel functions. This paper deals with traveling wave phenomena of a degenerate reaction-diffusion equation with the nonlocal effect. We study the existence of traveling wave solutions which may be non-monotonic based on the two-point boundary value problem and Schauder’s fixed point theorem. We are excited to find that the unknown positive steady state is exactly a unique positive equilibrium for the large wave speed and the monotonicity of traveling waves depends on the wave speed. On the other hand, we demonstrate the existence of monotone traveling wave solutions by using the monotone iteration and operator theory, and investigate how wave profile (e.g. being non-monotone or periodic) is affected by the enhancement of nonlocality, parameter values and variation of initial values for two different forms of convolution kernel functions.
doi_str_mv 10.1016/j.cnsns.2021.105990
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616538513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570421003026</els_id><sourcerecordid>2616538513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-79be8ad1b9fbe04beffc36564b231beb6fd91e4fcebea3c31dcf92b7c0c5e9533</originalsourceid><addsrcrecordid>eNp9kM1qwzAQhE1poWnaJ-hF0LNTybJs69BDCf2DQC_pWUjyKpFxpESyE_L2teOee9phmG-XnSR5JHhBMCmem4V20cVFhjMyOIxzfJXMSFVWaZmV-fWgMS5TVuL8NrmLscEDxVk-S8Q6yCO01m3QaRBovwXnd-Ak8gZJ5LxrvZYtCiB1Z71La2tMHweF4NDL0UIn221RDRtwEGQHF8g6kMF25_vkxsg2wsPfnCc_72_r5We6-v74Wr6uUk0p6dKSK6hkTRQ3CnCuwBhNC1bkKqNEgSpMzQnkRoMCSTUltTY8U6XGmgFnlM6Tp2nvPvhDD7ETje-DG06KrCAFoxUjY4pOKR18jAGM2Ae7k-EsCBZjk6IRlybF2KSYmhyol4mC4YGjhSCituA01DaA7kTt7b_8L41EgMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616538513</pqid></control><display><type>article</type><title>Traveling wave phenomena of a nonlocal reaction-diffusion equation with degenerate nonlinearity</title><source>Elsevier ScienceDirect Journals</source><creator>Han, Bang-Sheng ; Feng, Zhaosheng ; Bo, Wei-Jian</creator><creatorcontrib>Han, Bang-Sheng ; Feng, Zhaosheng ; Bo, Wei-Jian</creatorcontrib><description>•Establish the existence of traveling wave solutions for degenerate reaction-diffusion equations with the nonlocal effect.•Demonstrate the existence of monotone traveling wave solutions by using the monotone iteration and operator theory, and investigate how wave profile (e.g. being non-monotone or periodic) is affected by the enhancement of nonlocality, parameter values and variation of initial values for two different forms of convolution kernel functions. This paper deals with traveling wave phenomena of a degenerate reaction-diffusion equation with the nonlocal effect. We study the existence of traveling wave solutions which may be non-monotonic based on the two-point boundary value problem and Schauder’s fixed point theorem. We are excited to find that the unknown positive steady state is exactly a unique positive equilibrium for the large wave speed and the monotonicity of traveling waves depends on the wave speed. On the other hand, we demonstrate the existence of monotone traveling wave solutions by using the monotone iteration and operator theory, and investigate how wave profile (e.g. being non-monotone or periodic) is affected by the enhancement of nonlocality, parameter values and variation of initial values for two different forms of convolution kernel functions.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2021.105990</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boundary conditions ; Boundary value problems ; Degenerate nonlinearity ; Diffusion ; Fixed points (mathematics) ; Kernel functions ; Nonlinear equations ; Nonlocal reaction-diffusion equation ; Propagation ; Reaction-diffusion equations ; Traveling wave solutions ; Traveling waves ; Upper-lower solutions</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2021-12, Vol.103, p.105990, Article 105990</ispartof><rights>2021</rights><rights>Copyright Elsevier Science Ltd. Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-79be8ad1b9fbe04beffc36564b231beb6fd91e4fcebea3c31dcf92b7c0c5e9533</citedby><cites>FETCH-LOGICAL-c331t-79be8ad1b9fbe04beffc36564b231beb6fd91e4fcebea3c31dcf92b7c0c5e9533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1007570421003026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Han, Bang-Sheng</creatorcontrib><creatorcontrib>Feng, Zhaosheng</creatorcontrib><creatorcontrib>Bo, Wei-Jian</creatorcontrib><title>Traveling wave phenomena of a nonlocal reaction-diffusion equation with degenerate nonlinearity</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•Establish the existence of traveling wave solutions for degenerate reaction-diffusion equations with the nonlocal effect.•Demonstrate the existence of monotone traveling wave solutions by using the monotone iteration and operator theory, and investigate how wave profile (e.g. being non-monotone or periodic) is affected by the enhancement of nonlocality, parameter values and variation of initial values for two different forms of convolution kernel functions. This paper deals with traveling wave phenomena of a degenerate reaction-diffusion equation with the nonlocal effect. We study the existence of traveling wave solutions which may be non-monotonic based on the two-point boundary value problem and Schauder’s fixed point theorem. We are excited to find that the unknown positive steady state is exactly a unique positive equilibrium for the large wave speed and the monotonicity of traveling waves depends on the wave speed. On the other hand, we demonstrate the existence of monotone traveling wave solutions by using the monotone iteration and operator theory, and investigate how wave profile (e.g. being non-monotone or periodic) is affected by the enhancement of nonlocality, parameter values and variation of initial values for two different forms of convolution kernel functions.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Degenerate nonlinearity</subject><subject>Diffusion</subject><subject>Fixed points (mathematics)</subject><subject>Kernel functions</subject><subject>Nonlinear equations</subject><subject>Nonlocal reaction-diffusion equation</subject><subject>Propagation</subject><subject>Reaction-diffusion equations</subject><subject>Traveling wave solutions</subject><subject>Traveling waves</subject><subject>Upper-lower solutions</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qwzAQhE1poWnaJ-hF0LNTybJs69BDCf2DQC_pWUjyKpFxpESyE_L2teOee9phmG-XnSR5JHhBMCmem4V20cVFhjMyOIxzfJXMSFVWaZmV-fWgMS5TVuL8NrmLscEDxVk-S8Q6yCO01m3QaRBovwXnd-Ak8gZJ5LxrvZYtCiB1Z71La2tMHweF4NDL0UIn221RDRtwEGQHF8g6kMF25_vkxsg2wsPfnCc_72_r5We6-v74Wr6uUk0p6dKSK6hkTRQ3CnCuwBhNC1bkKqNEgSpMzQnkRoMCSTUltTY8U6XGmgFnlM6Tp2nvPvhDD7ETje-DG06KrCAFoxUjY4pOKR18jAGM2Ae7k-EsCBZjk6IRlybF2KSYmhyol4mC4YGjhSCituA01DaA7kTt7b_8L41EgMw</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Han, Bang-Sheng</creator><creator>Feng, Zhaosheng</creator><creator>Bo, Wei-Jian</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202112</creationdate><title>Traveling wave phenomena of a nonlocal reaction-diffusion equation with degenerate nonlinearity</title><author>Han, Bang-Sheng ; Feng, Zhaosheng ; Bo, Wei-Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-79be8ad1b9fbe04beffc36564b231beb6fd91e4fcebea3c31dcf92b7c0c5e9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Degenerate nonlinearity</topic><topic>Diffusion</topic><topic>Fixed points (mathematics)</topic><topic>Kernel functions</topic><topic>Nonlinear equations</topic><topic>Nonlocal reaction-diffusion equation</topic><topic>Propagation</topic><topic>Reaction-diffusion equations</topic><topic>Traveling wave solutions</topic><topic>Traveling waves</topic><topic>Upper-lower solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Bang-Sheng</creatorcontrib><creatorcontrib>Feng, Zhaosheng</creatorcontrib><creatorcontrib>Bo, Wei-Jian</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Bang-Sheng</au><au>Feng, Zhaosheng</au><au>Bo, Wei-Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traveling wave phenomena of a nonlocal reaction-diffusion equation with degenerate nonlinearity</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2021-12</date><risdate>2021</risdate><volume>103</volume><spage>105990</spage><pages>105990-</pages><artnum>105990</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•Establish the existence of traveling wave solutions for degenerate reaction-diffusion equations with the nonlocal effect.•Demonstrate the existence of monotone traveling wave solutions by using the monotone iteration and operator theory, and investigate how wave profile (e.g. being non-monotone or periodic) is affected by the enhancement of nonlocality, parameter values and variation of initial values for two different forms of convolution kernel functions. This paper deals with traveling wave phenomena of a degenerate reaction-diffusion equation with the nonlocal effect. We study the existence of traveling wave solutions which may be non-monotonic based on the two-point boundary value problem and Schauder’s fixed point theorem. We are excited to find that the unknown positive steady state is exactly a unique positive equilibrium for the large wave speed and the monotonicity of traveling waves depends on the wave speed. On the other hand, we demonstrate the existence of monotone traveling wave solutions by using the monotone iteration and operator theory, and investigate how wave profile (e.g. being non-monotone or periodic) is affected by the enhancement of nonlocality, parameter values and variation of initial values for two different forms of convolution kernel functions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2021.105990</doi></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2021-12, Vol.103, p.105990, Article 105990
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2616538513
source Elsevier ScienceDirect Journals
subjects Boundary conditions
Boundary value problems
Degenerate nonlinearity
Diffusion
Fixed points (mathematics)
Kernel functions
Nonlinear equations
Nonlocal reaction-diffusion equation
Propagation
Reaction-diffusion equations
Traveling wave solutions
Traveling waves
Upper-lower solutions
title Traveling wave phenomena of a nonlocal reaction-diffusion equation with degenerate nonlinearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traveling%20wave%20phenomena%20of%20a%20nonlocal%20reaction-diffusion%20equation%20with%20degenerate%20nonlinearity&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Han,%20Bang-Sheng&rft.date=2021-12&rft.volume=103&rft.spage=105990&rft.pages=105990-&rft.artnum=105990&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2021.105990&rft_dat=%3Cproquest_cross%3E2616538513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616538513&rft_id=info:pmid/&rft_els_id=S1007570421003026&rfr_iscdi=true