Traveling wave phenomena of a nonlocal reaction-diffusion equation with degenerate nonlinearity

•Establish the existence of traveling wave solutions for degenerate reaction-diffusion equations with the nonlocal effect.•Demonstrate the existence of monotone traveling wave solutions by using the monotone iteration and operator theory, and investigate how wave profile (e.g. being non-monotone or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2021-12, Vol.103, p.105990, Article 105990
Hauptverfasser: Han, Bang-Sheng, Feng, Zhaosheng, Bo, Wei-Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Establish the existence of traveling wave solutions for degenerate reaction-diffusion equations with the nonlocal effect.•Demonstrate the existence of monotone traveling wave solutions by using the monotone iteration and operator theory, and investigate how wave profile (e.g. being non-monotone or periodic) is affected by the enhancement of nonlocality, parameter values and variation of initial values for two different forms of convolution kernel functions. This paper deals with traveling wave phenomena of a degenerate reaction-diffusion equation with the nonlocal effect. We study the existence of traveling wave solutions which may be non-monotonic based on the two-point boundary value problem and Schauder’s fixed point theorem. We are excited to find that the unknown positive steady state is exactly a unique positive equilibrium for the large wave speed and the monotonicity of traveling waves depends on the wave speed. On the other hand, we demonstrate the existence of monotone traveling wave solutions by using the monotone iteration and operator theory, and investigate how wave profile (e.g. being non-monotone or periodic) is affected by the enhancement of nonlocality, parameter values and variation of initial values for two different forms of convolution kernel functions.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2021.105990