Analysis and control of a Stewart platform as base motion compensators - Part I: Kinematics using moving frames
Kinematics and its control application are presented for a Stewart platform whose base plate is installed on a floor in a moving ship or a vehicle. With a manipulator or a sensitive equipment mounted on the top plate, a Stewart platform is utilized to mitigate the undesirable motion of its base plat...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2022, Vol.107 (1), p.51-76 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Kinematics and its control application are presented for a Stewart platform whose base plate is installed on a floor in a moving ship or a vehicle. With a manipulator or a sensitive equipment mounted on the top plate, a Stewart platform is utilized to mitigate the undesirable motion of its base plate by controlling actuated translational joints on six legs. To reveal closed loops, a directed graph is utilized to express the joint connections. Then, kinematics begins by attaching an orthonormal coordinate system to each body at its center of mass and to each joint to define
moving coordinate frames
. Using the moving frames, each body in the configuration space is represented by an inertial position vector of its center of mass in the
three-dimensional vector space
ℝ
3
, and a rotation matrix of the body-attached coordinate axes. The set of differentiable rotation matrices forms a Lie group: the
special orthogonal group
,
SO
(3). The connections of body-attached moving frames are mathematically expressed by using
frame connection matrices
, which belong to another Lie group: the
special Euclidean group
,
SE
(3). The employment of
SO
(3) and
SE
(3) facilitates effective matrix computations of velocities of body-attached coordinate frames. Loop closure constrains are expressed in matrix form and solved analytically for
inverse kinematics
. Finally, experimental results of an inverse kinematics control are presented for a scale model of a base-moving Stewart platform. Dynamics and a control application of inverse dynamics are presented in the part II-paper. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-021-06767-8 |