Square integrable holomorphic functions on infinite-dimensional Heisenberg type groups

We introduce a class of non-commutative, complex, infinite-dimensional Heisenberg like Lie groups based on an abstract Wiener space. The holomorphic functions which are also square integrable with respect to a heat kernel measure  μ on these groups are studied. In particular, we establish a unitary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2010-07, Vol.147 (3-4), p.481-528
Hauptverfasser: Driver, Bruce K., Gordina, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a class of non-commutative, complex, infinite-dimensional Heisenberg like Lie groups based on an abstract Wiener space. The holomorphic functions which are also square integrable with respect to a heat kernel measure  μ on these groups are studied. In particular, we establish a unitary equivalence between the square integrable holomorphic functions and a certain completion of the universal enveloping algebra of the “Lie algebra” of this class of groups. Using quasi-invariance of the heat kernel measure, we also construct a skeleton map which characterizes globally defined functions from the L 2 (ν)-closure of holomorphic polynomials by their values on the Cameron–Martin subgroup.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-009-0213-y