Bounds for discrete multilinear spherical maximal functions
We define a discrete version of the bilinear spherical maximal function, and show bilinear l p ( Z d ) × l q ( Z d ) → l r ( Z d ) bounds for d ≥ 3 , 1 p + 1 q ≥ 1 r , r > d d - 2 and p , q ≥ 1 . Due to interpolation, the key estimate is an l p ( Z d ) × l ∞ ( Z d ) → l p ( Z d ) bound, which hol...
Gespeichert in:
Veröffentlicht in: | Collectanea mathematica (Barcelona) 2022, Vol.73 (1), p.75-87 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define a discrete version of the bilinear spherical maximal function, and show bilinear
l
p
(
Z
d
)
×
l
q
(
Z
d
)
→
l
r
(
Z
d
)
bounds for
d
≥
3
,
1
p
+
1
q
≥
1
r
,
r
>
d
d
-
2
and
p
,
q
≥
1
. Due to interpolation, the key estimate is an
l
p
(
Z
d
)
×
l
∞
(
Z
d
)
→
l
p
(
Z
d
)
bound, which holds when
d
≥
3
,
p
>
d
d
-
2
. A key feature of our argument is the use of the circle method which allows us to decouple the dimension from the number of functions compared to the work of Cook. |
---|---|
ISSN: | 0010-0757 2038-4815 |
DOI: | 10.1007/s13348-020-00308-z |