Bounds for discrete multilinear spherical maximal functions

We define a discrete version of the bilinear spherical maximal function, and show bilinear l p ( Z d ) × l q ( Z d ) → l r ( Z d ) bounds for d ≥ 3 , 1 p + 1 q ≥ 1 r , r > d d - 2 and p , q ≥ 1 . Due to interpolation, the key estimate is an l p ( Z d ) × l ∞ ( Z d ) → l p ( Z d ) bound, which hol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Collectanea mathematica (Barcelona) 2022, Vol.73 (1), p.75-87
Hauptverfasser: Anderson, Theresa C., Palsson, Eyvindur Ari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define a discrete version of the bilinear spherical maximal function, and show bilinear l p ( Z d ) × l q ( Z d ) → l r ( Z d ) bounds for d ≥ 3 , 1 p + 1 q ≥ 1 r , r > d d - 2 and p , q ≥ 1 . Due to interpolation, the key estimate is an l p ( Z d ) × l ∞ ( Z d ) → l p ( Z d ) bound, which holds when d ≥ 3 , p > d d - 2 . A key feature of our argument is the use of the circle method which allows us to decouple the dimension from the number of functions compared to the work of Cook.
ISSN:0010-0757
2038-4815
DOI:10.1007/s13348-020-00308-z