Blockchain-Enabled Task Offloading and Resource Allocation in Fog Computing Networks

To address the data security and user privacy issues in the task offloading process and resource allocation of the fog computing network, a blockchain-enabled fog computing network task offloading model is proposed in this paper. Furthermore, to reduce the network utility which is defined as the tot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2021, Vol.2021 (1)
Hauptverfasser: Huang, Xiaoge, Deng, Xuesong, Liang, Chengchao, Fan, Weiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To address the data security and user privacy issues in the task offloading process and resource allocation of the fog computing network, a blockchain-enabled fog computing network task offloading model is proposed in this paper. Furthermore, to reduce the network utility which is defined as the total energy consumption of the fog computing network and the total delay of the blockchain network, a blockchain-enabled fog computing network task offloading and resource allocation algorithm (TR-BFCN) is proposed to jointly optimize the task offloading decision and resource allocation. Finally, the original nonconvex optimization problem is converted into two suboptimization problems, namely, task offloading decisions and computational resource allocations. Moreover, a two-stage Stackelberg game model is designed to obtain the optimal amount of purchased resource and the optimal resource pricing. Simulation results show that the proposed TR-BFCN algorithm can effectively reduce the network utility compared with other algorithms.
ISSN:1530-8669
1530-8677
DOI:10.1155/2021/7518534