Fuzzy Frequent Pattern Mining Algorithm Based on Weighted Sliding Window and Type-2 Fuzzy Sets over Medical Data Stream
Real-time data stream mining algorithms are largely based on binary datasets and do not handle continuous quantitative data streams, especially in medical data mining field. Therefore, this paper proposes a new weighted sliding window fuzzy frequent pattern mining algorithm based on interval type-2...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2021, Vol.2021 (1), Article 6662254 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Wireless communications and mobile computing |
container_volume | 2021 |
creator | Chen, Jing Li, Peng Fang, Weiqing Zhou, Ning Yin, Yue Zheng, Hui Xu, He Wang, Ruchuan |
description | Real-time data stream mining algorithms are largely based on binary datasets and do not handle continuous quantitative data streams, especially in medical data mining field. Therefore, this paper proposes a new weighted sliding window fuzzy frequent pattern mining algorithm based on interval type-2 fuzzy set theory over data stream (WSWFFP-T2) with a single scan based on the artificial datasets of medical data stream. The weighted fuzzy frequent pattern tree based on type-2 fuzzy set theory (WFFPT2-tree) and fuzzy-list sorted structure (FLSS) is designed to mine the fuzzy frequent patterns (FFPs) over the medical data stream. The experiments show that the proposed WSWFFP-T2 algorithm is optimal for mining the quantitative data stream and not limited to the fragile databases; the performance is reliable and stable under the condition of the weighted sliding window. Moreover, the proposed algorithm has high performance in mining the FFPs compared with the existing algorithms under the condition of recall and precision rates. |
doi_str_mv | 10.1155/2021/6662254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2615860891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615860891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-497f7c37b66b8b9cd1407cda30a242cc4501e08973a9af30ac4bab99ddb949a63</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhgdR8LrzAQIudTSZzCSTpVargqLQisvhTJJpI21Sk9TSPr0pLboTVzmE7z-XL8tOCb4kpKquClyQK8ZYUVTlTnZAKorzmnG--1MzsZ8dhvCBMaYJPsgW_flqtUR9rz_n2kb0CjFqb9GzscaO0PVk5LyJ4ym6gaAVcha9azMax1QPJkatmXdjlVsgsAoNlzOdF2jTc6BjQO5Le_SslZEwQbcQAQ2i1zA9zvY6mAR9sn2Psrf-3bD3kD-93D_2rp9ySSmPeSl4xyXlLWNt3QqpSIm5VEAxFGUhZVlhonEtOAUBXfqVZQutEEq1ohTA6FF2tuk78y5dGGLz4ebeppFNwUhVsxQmibrYUNK7ELzumpk3U_DLhuBmrbZZq222ahNeb_CFbl0XpNFW6p9IcstpLWhd4rXmnokQjbM9N7cxRc__H_2lx8kxLMzfa30DDFaZIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615860891</pqid></control><display><type>article</type><title>Fuzzy Frequent Pattern Mining Algorithm Based on Weighted Sliding Window and Type-2 Fuzzy Sets over Medical Data Stream</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Chen, Jing ; Li, Peng ; Fang, Weiqing ; Zhou, Ning ; Yin, Yue ; Zheng, Hui ; Xu, He ; Wang, Ruchuan</creator><contributor>Sangaiah, Arun K. ; Arun K Sangaiah</contributor><creatorcontrib>Chen, Jing ; Li, Peng ; Fang, Weiqing ; Zhou, Ning ; Yin, Yue ; Zheng, Hui ; Xu, He ; Wang, Ruchuan ; Sangaiah, Arun K. ; Arun K Sangaiah</creatorcontrib><description>Real-time data stream mining algorithms are largely based on binary datasets and do not handle continuous quantitative data streams, especially in medical data mining field. Therefore, this paper proposes a new weighted sliding window fuzzy frequent pattern mining algorithm based on interval type-2 fuzzy set theory over data stream (WSWFFP-T2) with a single scan based on the artificial datasets of medical data stream. The weighted fuzzy frequent pattern tree based on type-2 fuzzy set theory (WFFPT2-tree) and fuzzy-list sorted structure (FLSS) is designed to mine the fuzzy frequent patterns (FFPs) over the medical data stream. The experiments show that the proposed WSWFFP-T2 algorithm is optimal for mining the quantitative data stream and not limited to the fragile databases; the performance is reliable and stable under the condition of the weighted sliding window. Moreover, the proposed algorithm has high performance in mining the FFPs compared with the existing algorithms under the condition of recall and precision rates.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2021/6662254</identifier><language>eng</language><publisher>LONDON: Hindawi</publisher><subject>Algorithms ; Computer Science ; Computer Science, Information Systems ; Data mining ; Data transmission ; Datasets ; Engineering ; Engineering, Electrical & Electronic ; Fuzzy set theory ; Fuzzy sets ; Medical diagnosis ; Mines ; Pattern analysis ; Science & Technology ; Set theory ; Sliding ; Technology ; Telecommunications</subject><ispartof>Wireless communications and mobile computing, 2021, Vol.2021 (1), Article 6662254</ispartof><rights>Copyright © 2021 Jing Chen et al.</rights><rights>Copyright © 2021 Jing Chen et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000738938400003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c337t-497f7c37b66b8b9cd1407cda30a242cc4501e08973a9af30ac4bab99ddb949a63</citedby><cites>FETCH-LOGICAL-c337t-497f7c37b66b8b9cd1407cda30a242cc4501e08973a9af30ac4bab99ddb949a63</cites><orcidid>0000-0001-8919-2528 ; 0000-0002-1927-6301 ; 0000-0001-5959-2483 ; 0000-0003-2809-2237 ; 0000-0001-5026-5347 ; 0000-0002-6044-731X ; 0000-0002-6890-6488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27910,27911,27912</link.rule.ids></links><search><contributor>Sangaiah, Arun K.</contributor><contributor>Arun K Sangaiah</contributor><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Fang, Weiqing</creatorcontrib><creatorcontrib>Zhou, Ning</creatorcontrib><creatorcontrib>Yin, Yue</creatorcontrib><creatorcontrib>Zheng, Hui</creatorcontrib><creatorcontrib>Xu, He</creatorcontrib><creatorcontrib>Wang, Ruchuan</creatorcontrib><title>Fuzzy Frequent Pattern Mining Algorithm Based on Weighted Sliding Window and Type-2 Fuzzy Sets over Medical Data Stream</title><title>Wireless communications and mobile computing</title><addtitle>WIREL COMMUN MOB COM</addtitle><description>Real-time data stream mining algorithms are largely based on binary datasets and do not handle continuous quantitative data streams, especially in medical data mining field. Therefore, this paper proposes a new weighted sliding window fuzzy frequent pattern mining algorithm based on interval type-2 fuzzy set theory over data stream (WSWFFP-T2) with a single scan based on the artificial datasets of medical data stream. The weighted fuzzy frequent pattern tree based on type-2 fuzzy set theory (WFFPT2-tree) and fuzzy-list sorted structure (FLSS) is designed to mine the fuzzy frequent patterns (FFPs) over the medical data stream. The experiments show that the proposed WSWFFP-T2 algorithm is optimal for mining the quantitative data stream and not limited to the fragile databases; the performance is reliable and stable under the condition of the weighted sliding window. Moreover, the proposed algorithm has high performance in mining the FFPs compared with the existing algorithms under the condition of recall and precision rates.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Data mining</subject><subject>Data transmission</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Medical diagnosis</subject><subject>Mines</subject><subject>Pattern analysis</subject><subject>Science & Technology</subject><subject>Set theory</subject><subject>Sliding</subject><subject>Technology</subject><subject>Telecommunications</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkMtKAzEUhgdR8LrzAQIudTSZzCSTpVargqLQisvhTJJpI21Sk9TSPr0pLboTVzmE7z-XL8tOCb4kpKquClyQK8ZYUVTlTnZAKorzmnG--1MzsZ8dhvCBMaYJPsgW_flqtUR9rz_n2kb0CjFqb9GzscaO0PVk5LyJ4ym6gaAVcha9azMax1QPJkatmXdjlVsgsAoNlzOdF2jTc6BjQO5Le_SslZEwQbcQAQ2i1zA9zvY6mAR9sn2Psrf-3bD3kD-93D_2rp9ySSmPeSl4xyXlLWNt3QqpSIm5VEAxFGUhZVlhonEtOAUBXfqVZQutEEq1ohTA6FF2tuk78y5dGGLz4ebeppFNwUhVsxQmibrYUNK7ELzumpk3U_DLhuBmrbZZq222ahNeb_CFbl0XpNFW6p9IcstpLWhd4rXmnokQjbM9N7cxRc__H_2lx8kxLMzfa30DDFaZIw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chen, Jing</creator><creator>Li, Peng</creator><creator>Fang, Weiqing</creator><creator>Zhou, Ning</creator><creator>Yin, Yue</creator><creator>Zheng, Hui</creator><creator>Xu, He</creator><creator>Wang, Ruchuan</creator><general>Hindawi</general><general>Wiley-Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8919-2528</orcidid><orcidid>https://orcid.org/0000-0002-1927-6301</orcidid><orcidid>https://orcid.org/0000-0001-5959-2483</orcidid><orcidid>https://orcid.org/0000-0003-2809-2237</orcidid><orcidid>https://orcid.org/0000-0001-5026-5347</orcidid><orcidid>https://orcid.org/0000-0002-6044-731X</orcidid><orcidid>https://orcid.org/0000-0002-6890-6488</orcidid></search><sort><creationdate>2021</creationdate><title>Fuzzy Frequent Pattern Mining Algorithm Based on Weighted Sliding Window and Type-2 Fuzzy Sets over Medical Data Stream</title><author>Chen, Jing ; Li, Peng ; Fang, Weiqing ; Zhou, Ning ; Yin, Yue ; Zheng, Hui ; Xu, He ; Wang, Ruchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-497f7c37b66b8b9cd1407cda30a242cc4501e08973a9af30ac4bab99ddb949a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Data mining</topic><topic>Data transmission</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Medical diagnosis</topic><topic>Mines</topic><topic>Pattern analysis</topic><topic>Science & Technology</topic><topic>Set theory</topic><topic>Sliding</topic><topic>Technology</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Fang, Weiqing</creatorcontrib><creatorcontrib>Zhou, Ning</creatorcontrib><creatorcontrib>Yin, Yue</creatorcontrib><creatorcontrib>Zheng, Hui</creatorcontrib><creatorcontrib>Xu, He</creatorcontrib><creatorcontrib>Wang, Ruchuan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jing</au><au>Li, Peng</au><au>Fang, Weiqing</au><au>Zhou, Ning</au><au>Yin, Yue</au><au>Zheng, Hui</au><au>Xu, He</au><au>Wang, Ruchuan</au><au>Sangaiah, Arun K.</au><au>Arun K Sangaiah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Frequent Pattern Mining Algorithm Based on Weighted Sliding Window and Type-2 Fuzzy Sets over Medical Data Stream</atitle><jtitle>Wireless communications and mobile computing</jtitle><stitle>WIREL COMMUN MOB COM</stitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><artnum>6662254</artnum><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>Real-time data stream mining algorithms are largely based on binary datasets and do not handle continuous quantitative data streams, especially in medical data mining field. Therefore, this paper proposes a new weighted sliding window fuzzy frequent pattern mining algorithm based on interval type-2 fuzzy set theory over data stream (WSWFFP-T2) with a single scan based on the artificial datasets of medical data stream. The weighted fuzzy frequent pattern tree based on type-2 fuzzy set theory (WFFPT2-tree) and fuzzy-list sorted structure (FLSS) is designed to mine the fuzzy frequent patterns (FFPs) over the medical data stream. The experiments show that the proposed WSWFFP-T2 algorithm is optimal for mining the quantitative data stream and not limited to the fragile databases; the performance is reliable and stable under the condition of the weighted sliding window. Moreover, the proposed algorithm has high performance in mining the FFPs compared with the existing algorithms under the condition of recall and precision rates.</abstract><cop>LONDON</cop><pub>Hindawi</pub><doi>10.1155/2021/6662254</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8919-2528</orcidid><orcidid>https://orcid.org/0000-0002-1927-6301</orcidid><orcidid>https://orcid.org/0000-0001-5959-2483</orcidid><orcidid>https://orcid.org/0000-0003-2809-2237</orcidid><orcidid>https://orcid.org/0000-0001-5026-5347</orcidid><orcidid>https://orcid.org/0000-0002-6044-731X</orcidid><orcidid>https://orcid.org/0000-0002-6890-6488</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2021, Vol.2021 (1), Article 6662254 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2615860891 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Algorithms Computer Science Computer Science, Information Systems Data mining Data transmission Datasets Engineering Engineering, Electrical & Electronic Fuzzy set theory Fuzzy sets Medical diagnosis Mines Pattern analysis Science & Technology Set theory Sliding Technology Telecommunications |
title | Fuzzy Frequent Pattern Mining Algorithm Based on Weighted Sliding Window and Type-2 Fuzzy Sets over Medical Data Stream |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Frequent%20Pattern%20Mining%20Algorithm%20Based%20on%20Weighted%20Sliding%20Window%20and%20Type-2%20Fuzzy%20Sets%20over%20Medical%20Data%20Stream&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Chen,%20Jing&rft.date=2021&rft.volume=2021&rft.issue=1&rft.artnum=6662254&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2021/6662254&rft_dat=%3Cproquest_webof%3E2615860891%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615860891&rft_id=info:pmid/&rfr_iscdi=true |