Fuzzy Frequent Pattern Mining Algorithm Based on Weighted Sliding Window and Type-2 Fuzzy Sets over Medical Data Stream

Real-time data stream mining algorithms are largely based on binary datasets and do not handle continuous quantitative data streams, especially in medical data mining field. Therefore, this paper proposes a new weighted sliding window fuzzy frequent pattern mining algorithm based on interval type-2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2021, Vol.2021 (1), Article 6662254
Hauptverfasser: Chen, Jing, Li, Peng, Fang, Weiqing, Zhou, Ning, Yin, Yue, Zheng, Hui, Xu, He, Wang, Ruchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Real-time data stream mining algorithms are largely based on binary datasets and do not handle continuous quantitative data streams, especially in medical data mining field. Therefore, this paper proposes a new weighted sliding window fuzzy frequent pattern mining algorithm based on interval type-2 fuzzy set theory over data stream (WSWFFP-T2) with a single scan based on the artificial datasets of medical data stream. The weighted fuzzy frequent pattern tree based on type-2 fuzzy set theory (WFFPT2-tree) and fuzzy-list sorted structure (FLSS) is designed to mine the fuzzy frequent patterns (FFPs) over the medical data stream. The experiments show that the proposed WSWFFP-T2 algorithm is optimal for mining the quantitative data stream and not limited to the fragile databases; the performance is reliable and stable under the condition of the weighted sliding window. Moreover, the proposed algorithm has high performance in mining the FFPs compared with the existing algorithms under the condition of recall and precision rates.
ISSN:1530-8669
1530-8677
DOI:10.1155/2021/6662254