A Quasioppositional-Chaotic Symbiotic Organisms Search Algorithm for Distribution Network Reconfiguration with Distributed Generations

This study suggests an enhanced metaheuristic method based on the Symbiotic Organisms Search (SOS) algorithm, namely, Quasioppositional Chaotic Symbiotic Organisms Search (QOCSOS). It aims to optimize the network configuration simultaneously and allocate distributed generation (DG) subject to the mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-12, Vol.2021, p.1-13
Hauptverfasser: Nguyen Hoang, Minh-Tuan, Truong, Bao-Huy, Hoang, Khoa Truong, Dang Tuan, Khanh, Vo Ngoc, Dieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study suggests an enhanced metaheuristic method based on the Symbiotic Organisms Search (SOS) algorithm, namely, Quasioppositional Chaotic Symbiotic Organisms Search (QOCSOS). It aims to optimize the network configuration simultaneously and allocate distributed generation (DG) subject to the minimum real power loss in radial distribution networks (RDNs). The suggested method is developed by integrating the Quasiopposition-Based Learning (QOBL) as well as Chaotic Local Search (CLS) approaches into the original SOS algorithm to obtain better global search capacity. The proposed QOCSOS algorithm is tested on 33-, 69-, and 119-bus RDNs to verify its effectiveness. The findings demonstrate that the suggested QOCSOS technique outperformed the original SOS and provided higher-quality alternatives than many other methods studied. Accordingly, the proposed QOCSOS algorithm is favourable in adapting to the DG placement problems and optimal distribution network reconfiguration.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/2065043