Integration of Interpretive Structural Modeling with Fuzzy Bayesian Network for Risk Assessment of Tunnel Collapse

Frequent collapse accidents in tunnels are associated with many construction risk factors, and the interrelationship among these risk factors is complex and ambiguous. This study’s aim is to clarify the relationship among risk factors to reduce the tunnel collapse risk. A multicriteria decision-maki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-12, Vol.2021, p.1-14
Hauptverfasser: He, Leping, Tang, Tao, Hu, Qijun, Cai, Qijie, Li, Zhijun, Tang, Shaowu, Wang, Yichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Frequent collapse accidents in tunnels are associated with many construction risk factors, and the interrelationship among these risk factors is complex and ambiguous. This study’s aim is to clarify the relationship among risk factors to reduce the tunnel collapse risk. A multicriteria decision-making method is proposed by combining interpretive structural modeling (ISM) and fuzzy Bayesian network (FBN). ISM is used to determine the hierarchical relationships among risk factors. FBN quantitatively analyzes the strength of the interaction among risk factors and conducts risk analysis. The ISM-FBN method contains three steps: (1) drawing the ISM-directed graph; (2) obtaining the probability of the FBN nodes; and (3) using GeNle to implement risk analysis. The proposed method is also used to assess the collapse risk and detect the critical factors in the Canglongxia Tunnel, China. This method’s tunnel collapse risk model can provide managers with clear risk information and better realize project management.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/7518284