Comparative evaluation of fibrous artificial carbons and bamboo charcoal in terms of recovery of current from sewage wastewater

In this study, two fibrous carbon anodes (namely, pleated non-woven graphite (PNWG) and carbon brush (CB) made from artificial carbon) and bamboo charcoal (BC) were evaluated for current recovery from sewage wastewater. When these anodes were polarized at 0.2 V vs. Ag/AgCl in sewage wastewater, CB p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of general and applied microbiology 2021, Vol.67(6), pp.248-255
Hauptverfasser: Nagahashi, Wataru, Yoshida, Naoko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, two fibrous carbon anodes (namely, pleated non-woven graphite (PNWG) and carbon brush (CB) made from artificial carbon) and bamboo charcoal (BC) were evaluated for current recovery from sewage wastewater. When these anodes were polarized at 0.2 V vs. Ag/AgCl in sewage wastewater, CB produced a maximum current of 2.9 A/m2. This exceeded that produced by PNWG (1.5 A/m2) and BC (1.4 A/m2). The accumulative charge recovery achieved with CB was superior to those achieved with the other two (1.6- and 2.2-fold higher than that with PNWG and BC, respectively). During the cyclic voltammetry analysis, CB demonstrated the highest catalytic current with maximum potential in the range of –0.6 to 0.4 V vs. Ag/AgCl and the smallest anode resistance (0.20 Ωm2). Direct cell counting revealed that the fibrous anodes (CB and PNWG) attached most of the cells in the anodes (80%), whereas BC did not. In contrast, the proportion of Geobacter species, a representative electrogenic microorganism in the total bacteria, was observed to be similar among the three anodes (4.4–5.8%). The tubular microbial fuel cell (ø 5.0 cm) equipped with an air-chamber core wrapped with an anion exchange membrane (AEM) and the CB delivered a current of 1.8 A/m2. This is higher than those reported in the existing literature for the same microbial fuel cell (MFC) configuration. This indicates that the alteration of the anode from planar to brush can contribute toward improving the current recovery through the air-cathode-AEM-MFC. The BC needs improvement to have more specific surface area, whereas it showed superiority in cost efficiency considering material and processing.
ISSN:0022-1260
1349-8037
DOI:10.2323/jgam.2021.05.001