One-shot Input-Output History Feedback Controller Design for Unknown Linear Systems: Reinforcement Learning Approach

In this paper, we propose a method of designing input-output history feedback controllers for unknown linear discrete-time systems. Many conventional reinforcement-learning based controls such as policy iteration are state-feedback. We extend the policy iteration by incorporating a method to statica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shisutemu Seigyo Jouhou Gakkai rombunshi Control and Information Engineers, 2021/09/15, Vol.34(9), pp.235-242
Hauptverfasser: Hirai, Takumi, Sadamoto, Tomonori
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a method of designing input-output history feedback controllers for unknown linear discrete-time systems. Many conventional reinforcement-learning based controls such as policy iteration are state-feedback. We extend the policy iteration by incorporating a method to statically estimate state variables from a history of finite-time input-output data. The convergence of the policy to model-based optimal solution has been theoretically guaranteed. Moreover, the proposed method is one-shot learning, i.e., the optimal controller can be obtained by using initial experiment data only. The effectiveness of the proposed method is shown through a numerical simulation through an oscillator network.
ISSN:1342-5668
2185-811X
DOI:10.5687/iscie.34.235