Resilient adaptive event-triggered H ∞ control for networked stochastic control systems under denial-of-service attacks

This paper addresses the problem of resilient adaptive event-triggered control (AETC) for networked stochastic control systems (NSCSs) in the presence of the external disturbance and the energy-constrained, nonperiodic denial-of-service (DoS) attacks. A novel adaptive event-triggered scheme (AETS) t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2022-02, Vol.44 (3), p.580-594
Hauptverfasser: Xie, Xuhuan, Li, Shanbin, Xu, Bugong, Li, Qinxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the problem of resilient adaptive event-triggered control (AETC) for networked stochastic control systems (NSCSs) in the presence of the external disturbance and the energy-constrained, nonperiodic denial-of-service (DoS) attacks. A novel adaptive event-triggered scheme (AETS) that considers the effect of the energy-constrained, nonperiodic DoS attacks on the communication network is proposed to reduce the usage of system resources and adapt the variation of the plant state, and the model of closed-loop control system is established in the framework of time-delay systems and switched systems. Then, based on the Lyapunov stability theory, the stability criterion and the co-design algorithm are derived, which are used to ensure that the closed-loop control system is stochastically exponentially stable (SES) with an H ∞ disturbance attenuation performance and to implement the co-design of state-feedback controller and proposed AETS, respectively. Unlike the network-based H ∞ control approach for NSCSs in the existing literature, the resilient adaptive event-triggered network-based H ∞ control approach proposed in this paper not only can considerably save the usage of system resources, but also can be resilient towards the energy-constrained, nonperiodic DoS attacks. Finally, a resilient AETC for the F16 aircraft system shows the effectiveness and superiority of proposed strategy.
ISSN:0142-3312
1477-0369
DOI:10.1177/01423312211039039