A new path planning method based on sparse A algorithm with map segmentation

Due to the complexity of map modeling, the massive computation and high redundancy of the traditional A* algorithm will greatly reduce the efficiency of pathfinding, resulting in huge performance consumption. Meanwhile, limited by neighborhood search strategy in grid map, the traditional A* algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2022-02, Vol.44 (4), p.916-925
Hauptverfasser: Zhaoying, Li, Ruoling, Shi, Zhao, Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the complexity of map modeling, the massive computation and high redundancy of the traditional A* algorithm will greatly reduce the efficiency of pathfinding, resulting in huge performance consumption. Meanwhile, limited by neighborhood search strategy in grid map, the traditional A* algorithm is actually unable to achieve the optimal path in the global sense. To solve these problems, this paper proposes an improved A* algorithm based on graph preprocessing. First, the free space on the map was decomposed into several polygon regions using the improved convex decomposition method based on Maklink. Then, each region was coded into feature nodes according to A* algorithm. Finally, an optimal region passage was found based on the principle of A* algorithm, in which the global optimal path solution was obtained. Compared with the traditional A* algorithm and other classical path planning algorithms, the proposed algorithm has significant advantages in planning speed, path cost, stability, and completeness.
ISSN:0142-3312
1477-0369
DOI:10.1177/01423312211046410