Model-Driven Deep Learning Method for Pancreatic Cancer Segmentation Based on Spiral-Transformation

Pancreatic cancer is a lethal malignant tumor with one of the worst prognoses. Accurate segmentation of pancreatic cancer is vital in clinical diagnosis and treatment. Due to the unclear boundary and small size of cancers, it is challenging to both manually annotate and automatically segment cancers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2022-01, Vol.41 (1), p.75-87
Hauptverfasser: Chen, Xiahan, Chen, Zihao, Li, Jun, Zhang, Yu-Dong, Lin, Xiaozhu, Qian, Xiaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pancreatic cancer is a lethal malignant tumor with one of the worst prognoses. Accurate segmentation of pancreatic cancer is vital in clinical diagnosis and treatment. Due to the unclear boundary and small size of cancers, it is challenging to both manually annotate and automatically segment cancers. Considering 3D information utilization and small sample sizes, we propose a model-driven deep learning method for pancreatic cancer segmentation based on spiral transformation. Specifically, a spiral-transformation algorithm with uniform sampling was developed to map 3D images onto 2D planes while preserving the spatial relationship between textures, thus addressing the challenge in effectively applying 3D contextual information in a 2D model. This study is the first to introduce spiral transformation in a segmentation task to provide effective data augmentation, alleviating the issue of small sample size. Moreover, a transformation-weight-corrected module was embedded into the deep learning model to unify the entire framework. It can achieve 2D segmentation and corresponding 3D rebuilding constraint to overcome non-unique 3D rebuilding results due to the uniform and dense sampling. A smooth regularization based on rebuilding prior knowledge was also designed to optimize segmentation results. The extensive experiments showed that the proposed method achieved a promising segmentation performance on multi-parametric MRIs, where T2, T1, ADC, DWI images obtained the DSC of 65.6%, 64.0%, 64.5%, 65.3%, respectively. This method can provide a novel paradigm to efficiently apply 3D information and augment sample sizes in the development of artificial intelligence for cancer segmentation. Our source codes will be released at https://github.com/SJTUBME-QianLab/ Spiral-Segmentation.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2021.3104460