On the existence of \(B\)-root subgroups on affine spherical varieties
Let \(X\) be an irreducible affine algebraic variety that is spherical with respect to an action of a connected reductive group \(G\). In this paper we provide sufficient conditions, formulated in terms of weight combinatorics, for the existence of one-parameter additive actions on \(X\) normalized...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(X\) be an irreducible affine algebraic variety that is spherical with respect to an action of a connected reductive group \(G\). In this paper we provide sufficient conditions, formulated in terms of weight combinatorics, for the existence of one-parameter additive actions on \(X\) normalized by a Borel subgroup \(B \subset G\). As an application, we prove that every \(G\)-stable prime divisor in \(X\) can be connected with the open \(G\)-orbit by means of a suitable \(B\)-normalized one-parameter additive action. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2112.14268 |