Electron transport in multiple orifice hollow cathodes
The effect of keeper geometry on the transport of electrons is investigated experimentally using electrostatic probes in the plume of a hollow cathode. Three keeper configurations—one single orifice and two multiple orifices—were studied. The multiple orifice cases were chosen to examine the influen...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2021-12, Vol.130 (24) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of keeper geometry on the transport of electrons is investigated experimentally using electrostatic probes in the plume of a hollow cathode. Three keeper configurations—one single orifice and two multiple orifices—were studied. The multiple orifice cases were chosen to examine the influence of the hole-pattern radius while the total exit area and the number of holes remained constant. Two-dimensional maps of the plasma parameters and wave properties were inferred from the probe measurements and were used to evaluate a generalized Ohm’s law for the electron flow field. The contributions of pressure, fields, and drag on the transport of electrons were analyzed. The results indicate that increasing the hole-pattern spread reduces the electric field in the plume and increases the pressure contribution to the transport. A further analysis of turbulent wave energy conservation indicates that the multiple orifice keepers increase ion-neutral collisional damping, similar to auxillary flow injection. The implications of these findings on cathode plume modeling and keeper design are discussed. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0066894 |