A 7-nm Four-Core Mixed-Precision AI Chip With 26.2-TFLOPS Hybrid-FP8 Training, 104.9-TOPS INT4 Inference, and Workload-Aware Throttling
Reduced precision computation is a key enabling factor for energy-efficient acceleration of deep learning (DL) applications. This article presents a 7-nm four-core mixed-precision artificial intelligence (AI) chip that supports four compute precisions-FP16, Hybrid-FP8 (HFP8), INT4, and INT2-to suppo...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2022-01, Vol.57 (1), p.182-197 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reduced precision computation is a key enabling factor for energy-efficient acceleration of deep learning (DL) applications. This article presents a 7-nm four-core mixed-precision artificial intelligence (AI) chip that supports four compute precisions-FP16, Hybrid-FP8 (HFP8), INT4, and INT2-to support diverse application demands for training and inference. The chip leverages cutting-edge algorithmic advances to demonstrate leading-edge power efficiency for 8-bit floating-point (FP8) training and INT4 inference without model accuracy degradation. A new HFP8 format combined with separation of the floating- and fixed-point pipelines and aggressive circuit/architecture optimization enables performance improvements while maintaining high compute utilization. A high-bandwidth ring protocol enables efficient data communication, while power management using workload-aware clock throttling maximizes performance within a given power budget. The AI chip demonstrates 3.58-TFLOPS/W peak energy efficiency and 26.2-TFLOPS peak performance for HFP8 iso-accuracy training, and 16.9-TOPS/W peak energy efficiency and 104.9-TOPS peak performance for INT4 iso-accuracy inference. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2021.3120113 |