Statistical significance calculations for scenarios in visual inference

Statistical inference provides the protocols for conducting rigorous science, but data plots provide the opportunity to discover the unexpected. These disparate endeavours are bridged by visual inference, where a lineup protocol can be employed for statistical testing. Human observers are needed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stat (International Statistical Institute) 2021-12, Vol.10 (1), p.n/a
Hauptverfasser: VanderPlas, Susan, Röttger, Christian, Cook, Dianne, Hofmann, Heike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Statistical inference provides the protocols for conducting rigorous science, but data plots provide the opportunity to discover the unexpected. These disparate endeavours are bridged by visual inference, where a lineup protocol can be employed for statistical testing. Human observers are needed to assess the lineups, typically using a crowd‐sourcing service. This paper describes a new approach for computing statistical significance associated with the results from applying a lineup protocol. It utilizes a Dirichlet distribution to accommodate different levels of visual interest in individual null panels. The suggested procedures facilitate statistical inference for a broader range of data problems.
ISSN:2049-1573
2049-1573
DOI:10.1002/sta4.337