Statistical significance calculations for scenarios in visual inference
Statistical inference provides the protocols for conducting rigorous science, but data plots provide the opportunity to discover the unexpected. These disparate endeavours are bridged by visual inference, where a lineup protocol can be employed for statistical testing. Human observers are needed to...
Gespeichert in:
Veröffentlicht in: | Stat (International Statistical Institute) 2021-12, Vol.10 (1), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Statistical inference provides the protocols for conducting rigorous science, but data plots provide the opportunity to discover the unexpected. These disparate endeavours are bridged by visual inference, where a lineup protocol can be employed for statistical testing. Human observers are needed to assess the lineups, typically using a crowd‐sourcing service. This paper describes a new approach for computing statistical significance associated with the results from applying a lineup protocol. It utilizes a Dirichlet distribution to accommodate different levels of visual interest in individual null panels. The suggested procedures facilitate statistical inference for a broader range of data problems. |
---|---|
ISSN: | 2049-1573 2049-1573 |
DOI: | 10.1002/sta4.337 |