Second-Order Lagrange Multiplier Rules in Multiobjective Optimal Control of Infinite Dimensional Systems Under State Constraints and Mixed Pointwise Constraints
We investigate a multiobjective optimal control problem, governed by a strongly continuous semigroup operator in an infinite dimensional separable Banach space, and with final-state constraints, pointwise pure state constraints and a mixed pointwise control-state constraint. Basing on necessary opti...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2021-12, Vol.84 (Suppl 2), p.1521-1553 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate a multiobjective optimal control problem, governed by a strongly continuous semigroup operator in an infinite dimensional separable Banach space, and with final-state constraints, pointwise pure state constraints and a mixed pointwise control-state constraint. Basing on necessary optimality conditions obtained for an abstract multiobjective optimization framework, we establish a second-order Lagrange multiplier rule, of Fritz-John type, for local weak Pareto solutions of the problem under study. As a consequence of the main result, we also derive a multiplier rule for a multiobjective optimal control model driven by a bilinear system being affine-linear in the control, and with an objective function of continuous quadratic form. |
---|---|
ISSN: | 0095-4616 1432-0606 |
DOI: | 10.1007/s00245-021-09803-6 |